
The Galileo Ancillary Process Programmers Guide 1

THE GALILEO ANCILLARY PROCESS

PROGRAMMER 'S GUIDE

Version 2.0

Andrea Balestra, Paolo Marcucci, Mauro Pucillo, Claudio Vuerli
Astronomical Observatory of Trieste

October 1997

Astronomical Observatory of Trieste - Publication n. 1622

Abstract

In this document the Programmer's Guide to build a TNG Ancillary Process (AP) is described.
APs are the sole way to implement complex control procedures, which cannot be realized using
the definition tables provided within the WSS software. An AP acts as an intelligent interface
between the UIF in the control workstations, and the low level software layer which operates
directly on the TLP systems.

A brief description of the characteristics of an AP is given, followed by a complete description of
the tools available to the TNG programmer to accomplish the task of integrating a process in the
WSS environment. A template of a skeletal AP is also given, containing all the pieces of code
needed to have it working correctly in the WSS.

Table of contents
The Galileo Ancillary Process Programmer's Guide .. 1

Abstract ... 1
Table of contents ... 1
Introduction ... 3
Controlling the TNG from an ancillary process ... 3
Designing an AP ... 3

Startup definitions ... 4
Event handlers ... 4

Command handler ... 4
Alarm handler ... 5

The Galileo Ancillary Process Programmers Guide 2

Message handler.. 5
Timeout handler .. 5
Descriptors event handler ... 5

Startup function calls .. 6
Create the Unit .. 6

Add the unit record ... 6
Add parameters ... 7
Add commands ... 8
Add panels .. 9

Function list .. 10
tngAPInit ... 10
tngAPExit .. 11
tngAPSendCommand .. 11
tngAPReadParameter .. 12
tngAPSetDescriptors ... 13
tngAPSetParameter ... 13
tngAPShowInfo... 13
tngAPShowWarn .. 13
tngAPShowAlarm ... 14
tngAPRegisterHandlers... 14
tngAPMainLoop ... 15
tngAPGetCommand .. 15

Examples ... 16
Appendix A: Definition tables .. 18

Definition table for TNG systems (.scf) ... 18
Definition table for TNG units (.ucf) .. 18
Definition table for TNG parameters (.pcf) .. 18
Definition table for TNG microcommands (.mccf) .. 19
Definition table for TNG messages (.msg) ... 20
Definition table for TNG color palettes (.ctb) .. 20
Definition table for TNG interactive panels (.pdf) ... 21
Definition table for TNG interactive panel items (.pan) ... 21

Table 1 : interactive panel graphical elements .. 22
Table 2 : character fonts .. 23
Table 3 : operating modes for elements of type STATUS ... 23
References ... 23

The Galileo Ancillary Process Programmers Guide 3

Introduction

The baseline followed during the design and implementation phases of the TNG Software
System, has been to develop a system where all components were completely integrated with
each other, having a standard kernel providing all basic services (Telescope Data Base, User
Interface, Communications, etc.), complemented by a set of processes developed by the builders
of the instruments.

The kernel, actually the Workstation Software System (WSS), has been described in [1], while
its components have been described in [2, 3, 4, 5, 6, 7]. Here we want to point out how to
design an AP, and its relations and interconnections with the WSS environment and with the
final user, either the system maintainer or the observing astronomer.

Controlling the TNG from an ancillary process

The TNG WSS (Workstation Software System) can be fully controlled by the user via the
standard user interface (TUI) using the keyboard and the mouse installed at the astronomer's
workstation. Commands can be sent to the local system or to other workstations and Telescope
Local Processors (TLPs) in a transparent fashion, freeing the user from the need to remember
where a command is to be executed and which are its operands.

The WSS can also be controlled in a programmatic way, using the so called Ancillary Processes
(AP), which are launched from the init process and immediately go to sleep mode waiting for
commands, this way they do not add too much load to the system where they run. Actually they
sleep in the background and wake up only when their command queue is written in by some
requestor, either the user - via the User Interface (UIF) - or another WSS process - via the
internal message exchange system.

Designing an AP

An AP works as a layer between the UIF (or any other component of WSS) and the lower levels
of interaction between workstations and TLPs. It is possible to control all the functionalities of a
TLP sending microcommands and visualizing telemetry parameters, but it is much more feasible
to use an intermediate layer that takes care of complex interactions and command parsing.

As an example, if we want to select an observing mode of an instrument, this must imply that
operations not compatible with the selected mode have to be disabled. This behavior cannot be
obtained simply by definition tables, and has to be implemented via a dedicated software. The
AP is essentially a program built following some given guidelines and using a library of
functions that provides all the possible method of interaction between itself and the WSS
environment.

The Galileo Ancillary Process Programmers Guide 4

The program has to contain at least the following three parts:

Startup definitions
#define MAIN /* this is an ancillary program, not a library */
#include <tng.h> /* include all the TNG WSS standard include files */

Event handlers

Command handler

int cmd(from,acronym,txt,flags) /* command handler function */
 char from[],acronym[],txt[];
 int flags;
 {
 }

The command handler function will be called every time a command is received by the AP. To
ensure this, the command originator (either the UIF or another AP) has to specify the complete
command acronym built using the system name (eg. WSTC for Telescope Control Workstation),
the unit name (in this case, the acronym of the AP, eg. CCD for a CCD controller) and the
command acronym (it can be, for example, EXPOSE to start an exposition). The command built in
this way (WSTC_CCD_EXPOSE), wherever generated, will be directed to this function, where a
series of strcmp statements will be used to perform adequate actions. If the WSS system where
the AP will run is not known at design time (for example, a system wide AP) the system name
can be fetched with the internal function get_locsys() that returns the system name in a char*
variable.

Example:
int cmd(from,acronym,txt,flags) /* command handler function */
 char from[],acronym[],txt[];
 int flags;
 {
 if (!strcmp(tngAPGetCommand(acronym),"EXPOSE")) / * start exposition */
 {
 tngAPReadParameter ("wstc_ccd_extime/s",op);
 sprintf (s,"vmaz_ccd_expos %s",op);
 tngAPSendCommand (s,NULL,NULL);
 return (0);
 }
 }

The tngAPGetCommand function is an utility that strips down the command acronym to the
last part, the command acronym itself, without system and unit information.

Example:
tngAPGetCommand("WSTC_CCD_EXPOSE") returns "EXPOSE"

The Galileo Ancillary Process Programmers Guide 5

Alarm handler

int alm(from,acronym,txt,flags) /* alarm handler fu nction */
 char from[],acronym[],txt[];
 int flags;
 {
 }

Alarms are managed in the very same way as commands. They are sent by the UIF or other APs
as microcommands. The main difference is that alarms are not buffered but are executed as soon
as they arrive. This can be useful for ABORT operations or other non-timed commands.

To send an alarm, the originator calls the tngAPSendCommand function as for a normal
command. The choice between a simple command or an alarm is made by the UIF's command
parser, that looks for the Normal queue/execution field of the mccf file: if it is set, the
"command" will be directed to the Command Handler, if it is not set, the command will be
directed to the Alarm Handler.

Message handler

int msg(code) /* message handler function */
 int code;
 {
 }

Messages are managed in a way similar to callbacks. When a command is executed, it calls back
this function with an execution code. See the tngAPSendCommand function for a detailed
discussion about callbacks.

Timeout handler

int tout() /* timeout handler function */
 {
 }

Timeout events can be scheduled by setting the tmout operand in the tngAPInit call to a value
different than NULL. The tmout operand is a timeval struct and has to be filled by the
ancillary process’ writer.

Descriptors event handler

int descrev(fds) /* descriptor event handler funct ion */
 fd_set *fds;
 {
 }

The descriptor event handler is invoked every time an event is generated on a custom socket
port. Custom sockets are used by APs only in special cases; usually the socket-type
communication with other processes and workstations on the telescope network are directly
handled by the WSS, and only in particular cases, like managing external dedicated clients, these
kind of sockets are to be used.

The Galileo Ancillary Process Programmers Guide 6

Startup function calls
main()
 {
/* assign the AP and UIF names, don’t use custom so ckets or timeouts */
 tngAPInit("WSTC_CCD","WSTC_UIF",NULL,NULL);
/* register event handlers */
 tngAPRegisterHandlers (cmd,alm,msg,tout,descrev);
/* enter the main loop */
 tngAPMainLoop();
 }

The first two event handlers have a fixed syntax: they are int functions that accept three strings
(or char*) and an int describing, respectively, the unit the event is coming from, the acronym of
the command, the operands and the return code for the command itself. The msg handler has
only one parameter (an int) that is the return code for the callback function handler (i.e. the msg
function). See the tngAPSendCommand function for a discussion about callbacks. The tout
handler is an int function without parameters. The descrev handler takes, as parameter, an array
of custom socket descriptors.

Create the Unit

The design of an AP follows the logical definition of a unit as described in [1]. A unit is defined
in the TNG WSS as a component of a system, being it a workstation or a TLP. A unit can be a
process in a workstation or a set of related tasks implemented in a TLP. An AP can be used only
in the first case (a WS process), to implement functionality that cannot be defined by tables.

To add a unit to a system, the user should add a new record to the system's .ucf file. i.e: for a
system called WSSC, he should add a record to the wssc.ucf file. Moreover, he has to define the
parameters, commands and interactive panels which will allow the WSS to interact with the AP.

These additions are made using the Table Editor.

Add the unit record

Open the .ucf file of the system (if the system is WSSC, then the ucf file will be called wssc.ucf)

Fill the unit record

Unit id This field is automatically managed by the Table Editor program

Unit description A brief description of the ancillary process

Unit acronym The acronym of the ancillary process (max. 3 chars! Remember that

this file is at the unit level)

Process name and options The name of the AP, with no path information but with process

switches as desired

Protection level The protection level of the AP

Interaction panel id If this field is checked, an interactive panel with the unit's name (ex.

wssc_ccd.pan) is opened

Ancillary process This field MUST be checked

The Galileo Ancillary Process Programmers Guide 7

Wait for signal This field should normally be checked

Click on the Add menu item

Close the .ucf file

Add parameters

Create a new pcf file. To accomplish this task, select File|New|Parameters from the Table Editor
menu. Then enter the pcf file name (if the system is WSSC and we are adding the CCD unit, the pcf
file will be called wssc_ccd.pcf)

Open this file using the File|Open|Parameters menu entry on the Table Editor.

Fill the parameters record

TLP master descriptor This field is automatically managed by the Table Editor program

Parameter name The name of the parameter. This field has a length of 40 chars, but it is
preferable to limit it to 20 chars. This in order to display it correctly on

interactive panels.

Parameter acronym The acronym of the parameter (max 6 chars!)

Parameter description The description of the parameter

TLP parameter code TLP internal code. This item is mandatory if the parameter refers to a

TLP telemetry parameter. If the parameter refers to an ancillary

process this item is not used.

Parameter type Not currently implemented

Format of data The internal format of data. It can have the following values: f -

floating point, d - integer, s - character. In addition to that, a number
can be added to indicate the number of elements in an array (for

example f will mean a single floating point value, f4 will mean an array
of four [0..3] floating point values)

Access mode (RD,WR,RW) Access mode. Can assume the following values: RO - Read Only, RW -

Read Write, WR - Write Only

Decimal points Number of decimal places to be used in display.

TLP only If checked, the parameter is considered internal to the TLP and will not

be involved in telemetry operations.

Telemetry flag If checked, the parameter is added to the permanent telemetry list of

the destination TLP. Other parameters can always be added to and

removed from this list at runtime.

Convert to physical units If checked, the parameter value (coming from TLPs in engineering

units) is automatically converted to its physical value by using a

polynomial transformation with the following coefficents.

Polynomial coefficients The coefficents for the optional polynomial transformation.

Default value (for internal
PCFs)

This item applies only to internal parameters. i.e. parameters that
don't belong to TLPs. It is the default value as displayed on interactive

panels.

Check input limits If checked the parameter value is checked against the alarm and

attention thresholds.

Lower input limit (eng.units) Lower limit in engineering values.

Higher input limit

(eng.units)

Higher limit in engineering values.

The Galileo Ancillary Process Programmers Guide 8

Low threshold for ALARM In physical units.

High threshold for ALARM In physical units.

Low threshold for

ATTENTION

In physical units.

High threshold for

ATTENTION

In physical units.

Physical units A short string for unit description.

Telemetry rate The transmission rate of the parameter coming from the TLP. This is a

multiplier of the system's transmission rate. For example, if the system

has a rate of two seconds and this item is set to three seconds,

telemetry will be sent from the TLP every six seconds.

Click on the Add menu item

Repeat steps 3-4 until all parameters are entered

Close the .pcf file

Add commands

Create a new mccf file. To accomplish this task, select File|New|Microcommands from the Table
Editor menu. Then enter the mccf file name (if the system is WSSC and we are adding the CCD
unit, the mccf file will be called wssc_ccd.mccf)

Open this file using the File|Open|Microcommands menu entry on the Table Editor.

Fill the microcommands record

Microcommand code This field is automatically managed by the Table Editor program

Microcommand name The name of the microcommand. This field has a length of 40 chars.

Destination TLP/System The destination system's acronym.

Microcommand description The description of the microcommand.

Microcommand acronym The acronym of the microcommand (max 6 chars)

TLP command code TLP internal code. This item is mandatory if the command refers to a

TLP command. If the command refers to an ancillary process this item
is not used.

Immediate queue If checked, the command will be sent to the immediate queue on the

destination TLP. This item is not used in ancillary process' commands.

Wait for execution If checked, the sending process will wait for the execution message

from the destination TLP before to proceed with further processing.

Destination task/unit The task of the destination TLP or the unit (process) of the destination

workstation.

Verify execution If checked, the sending process will wait for a VERIFIED message from

the destination TLP/unit.

Verify completion If checked, the sending process will wait for a COMPLETED message
from the destination TLP/unit.

Min. time estimated for

execution

The time (in telemetry periods) after which, is a command is still not

executed, a EXWARN internal message is sent to the display process.

Max. time estimated for

execution

The time (in telemetry periods) after which, is a command is still not

executed, a EXALRM internal message is sent to the display process.

The Galileo Ancillary Process Programmers Guide 9

Number of operands The number of operand that the command will accept.

Verify TM parameter If checked, a verification is made on the given parameter.

TM parameter to verify The acronym of the telemetry parameter to verify.

Error/1000 allowed in TM

parameter

The allowed error margin. If the difference between the requested

value (usually set in the first operand) and the telemetry parameter to

verify is greater than the allowed error, an error message is generated.

Note: the following fields refer to the operand array

Convert to eng. units If checked, the operand, entered in physical units, will be converted to

engineering units before being sent to the destination TLP/unit.

Interpolation matrix An array of polynomial coefficients to convert operand from physical to

engineering units.

Operand description A description of the operand.

Operand type The internal format of the operand. It can have the following values: f -

floating point, d - integer, s - character. In addition to that, a number
can be added to indicate the number of elements in an array (for

example f will mean a single floating point value, f4 will mean an array

of four [0..3] floating point values)

Minimum value allowed

Maximum value allowed

Default value The default value of the operand.

Click on the Add menu item

Repeat steps 3-4 until all microcommands are entered

Close the .mccf file

Add panels

Design a panel using the Graphic editor and save it with a unique filename.

Add this panel to the Panel Description File (pdf) of the just created unit.

Open the requested .pdf file using the File|Open|Panel definition menu entry of the Table
Editor.

Fill the panel definition record

Panel identifier This field is automatically managed by the Table Editor program

Panel acronym The acronym of the panel (max 6 chars)

Default output screen The preferred screen for output. This item is used only in multi-screen

stations, otherwise, it defaults to screen :0.

Panel description A brief description of the panel.

Panel file The actual file name where the panel is stored (with no path

information or the suffix, e.g. telcont)

Protection level If the current user has a protection code higher than this, he cannot
open this panel. This works to protect sensitive panels from accidental

misusings.

Click on the Add menu item

The Galileo Ancillary Process Programmers Guide 10

Repeat steps 4-5 until all panel definitions are entered

Close the .pdf file

Function list

tngAPInit

This function executes the following steps:

1. Attaches the TDB

2. Initializes the signal system

3. Opens the message queue

It is MANDATORY to use this function as the first significant call in the AP.

Syntax:
int tngAPInit(acronym,uif,tmout,descarray)
 char acronym[],uif[];
 strcut timeval *tmout;
 fd_set *descarray;

Parameters:

acronym The acronym of the AP (e.g. WSTC_CCD)

Uif The acronym of the user interface where the output is redirected.

Descarray The array of custom socket descriptors that will be used by the AP. If NULL,

there are no custom sockets used by this process (this is the normal case)

Tmout The value (defined by a timeval struct) in microseconds upon which the AP

executes timed operations. If NULL, no timed operations are performed (this is
the normal case).

Result:

If the gdb_attach function cannot attach to the TDB, the function exits the process.

Example:
.
.
.
struct timeval timeout;
fd_set descarray;

/* set timeout for select call to 10 usec */
timeout.tv_usec = 10;
timeout.tv_sec = 0;

/* set array of descriptors for 'select' call */
FD_ZERO (&descarray); /* clear set */

The Galileo Ancillary Process Programmers Guide 11

FD_SET (first_socket_descriptor, &descarray);
FD_SET (second_socket_descriptor, &descarray);

tngAPInit (“WSTC_CCD”, “WSTC_UIF”, &timeout, &desca rray);
.
.
.

tngAPExit

This function exits the AP. It calls gdb_detach for a clean exit. The function should be called
during abnormal exits, because during normal exits the init process takes care of removing all
the garbage left by APs on message queues and internal links.

Syntax:
int tngAPExit (code, where)
 int code;
 char *where;

Parameters:

code the error code (or 0 for a normal exit)

where a string describing the possible location of the error.

tngAPSendCommand

This function sends a command to another unit in the TNG environment. The command to be
sent is included in the cmd string, and can be any of the commands defined in the configuration
tables for the given unit. The AP can send:

internal commands system-wide commands that control the functionality of the user interface

or system processes, e.g loadpanel, help, exit

TLP commands also known as microcommands (V..._..._......)

process commands commands directed to other APs (W..._..._......)

Syntax:
int tngAPSendCommand (cmd,retmsg,flag)
 char cmd[],retmsg[];
 int flag;

Parameters:

cmd the command to be sent, together with all the required operands.

retmsg the result of the operation, if required.

flag the type of command to be sent.

Notes:

flag can assume the following values:

AP_SIGWAIT (-1) the function sends the command and waits for its completion; the

retmsg parameter contains the return value for the operation

The Galileo Ancillary Process Programmers Guide 12

requested. The content of retmsg is not predefined, and is up to the
command executor to fill this variable in a consistent manner. As an

example the loadpanel function returns the number of the opened

panel.
AP_SIGNORM (0) the command is simply sent, no checking about its execution is done.
any other positive value: putting any other positive value in this field will activate a quasi-

callback event to be fired at the completion of the command. The value
(int) is passed as the first argument to the msg handler (see
tngAPRegisterHandlers), where the ancillary process can use it to
perform appropriate functions.

Example:

tngAPSendCommand ("WSIC_CCE_OSHUT",NULL,1234);

will send the command to the correct destination task and will go on

with the processing of following statements. When the command will

be executed by the destination task, a message is sent back to the AP,

with the 1234 code in the first (int) field.

The msg handler function will look like this:

int msg(code)
 int code;
 {
 if (code == 1234)
 {
 /* the command WSIC_CCE_OSHUT is completed.
 Perform the
 appropriate actions. */
 }
 }
It is up to the AP programmer to ensure a direct relation between

commands and return flags, i.e. to identify a specific command with a

specific code. The msg function must be registered with the

tngAPRegisterHandlers call.

tngAPReadParameter

This function reads the TDB and returns to the AP the value of an internal parameter.

Syntax:
int tngAPReadParameter (acronym,value)
 char acronym[];
 char value[80];

Parameters:

acronym the acronym of the parameter to be read. It can have the /Snn, /Cnn
suffixes to specify set or current values and the index inside an array.

Examples:

WSTC_CCD_EXTIME will return the current exposure time

WSTC_CCD_EXTIME/S will return the set exposure time

VMAZ_CCD_TEMP/C02 will return the second current value in an array
of temperatures

value the read value converted to a string. It is up to the programmer to

The Galileo Ancillary Process Programmers Guide 13

convert the result to a suitable type.

tngAPSetDescriptors

This function sets the custom socket descriptors handler array.

Syntax:
int tngAPSetParameter (descarray)
 fd_set *descarray;

Parameters:

descarray The array of descriptors to set

tngAPSetParameter

This function sets a value in the TDB.

Syntax:
int tngAPSetParameter (acronym,value)
 char acronym[];
 char value[80];

Parameters:

acronym the acronym of the parameter to be set. No suffixes are required, the

function will use /S by default to put the value in the "set" section.

Value the value to set. There are no checks on the validity of this value, so

the programmer should be careful and perform suitable integrity tests
before calling this function.

tngAPShowInfo

This function displays a informational message box.

Syntax:
int tngAPShowInfo (txt)
 char txt[];

Parameters:

txt the text to be displayed.

tngAPShowWarn

This function displays a warning message box.

Syntax:
int tngAPShowWarn (txt)
 char txt[];

The Galileo Ancillary Process Programmers Guide 14

Parameters:

txt the text to be displayed.

tngAPShowAlarm

This function displays an alarm message box.

Syntax:
int tngAPShowAlarm (txt)
 char txt[];

Parameters:

txt the text to be displayed.

tngAPRegisterHandlers

This function MUST be called immediately after the tngAPInit function to set up the pointers to
the command and alarm handler functions. These functions MUST be provided by the
programmer to handle the interpretation of commands, alarms and messages coming through the
internal message system.

Syntax:
void tngAPRegisterHandlers (command,alarm,message,t imeout,descrev)
 int (*command)();
 int (*alarm)();
 int (*message)();
 int (*timeout)();
 int (*descrev)();

Parameters:

Command the pointer to the command handler function

Alarm the pointer to the alarm handler function

Message the pointer to the message handler function

Timeout the pointer to the timeout handler function

Descrev the pointer to the descriptor events handler function

Notes:

The handler functions should have the following layouts (the names can be different, just be sure
to register them correctly to tngAPRegisterHandlers):

Command handler

int cmd(from,acronym,txt,flags)
 char from[],acronym[],txt[];
 long flags;

{
}

The Galileo Ancillary Process Programmers Guide 15

Alarm handler

int alm(from,acronym,txt,flags)
 char from[],acronym[],txt[];
 long flags;

{
}

Message handler

int msg(code)
 int code;

{
}

Timeout handler

int tout()

{
}

Descriptor events handler

int descrev(fds)
 fd_set *fds;

{
}

tngAPMainLoop

This function performs all the tasks needed to dispatch incoming commands and alarms. It also
sends to the init process the signal that all initializations have been made

Syntax:

void tngAPMainLoop()

Note:

This HAS to be the last statement in the main section of the AP. When the AP enters this
function, it will never exit. Other statements located after this statement will be ignored.

tngAPGetCommand

This is an utility function that extracts the last part (item) of a command acronym
(e.g. tngAPGetCommand("WSTC_CCD_EXPOSE") -> "EXPOSE")

Syntax:

char *tngAPGetCommand (acronym)
 char acronym[];

The Galileo Ancillary Process Programmers Guide 16

Parameters:

acronym the acronym to be analyzed

Examples

This is the listing of a typical AP:
#define MAIN
#include <tng.h>

int cmd(from,acronym,txt)
 char from[],acronym[],txt[];

 {
 char s[80], op[80];
 char retmsg[80];
 int i;

/* -- ----------- */
/* use the tngAPGetCommand to find out if the EXPOSE command */
/* was sent to the AP */
/* -- ----------- */
 if (!strcmp(tngAPGetCommand(acronym),"EXPOSE"))

 {
/* -- ----------- */
/* read the set value of the wstc_ccd_extime parameter and */
/* save it into the op string */
/* -- ----------- */
 tngAPReadParameter ("wstc_ccd_extime/s",op);

/* -- ----------- */
/* prepare a string containing the vmaz_ccd_expos microcommand */
/* and the op value (e.g. if op = 20, then the resulting string* /
/* s would be vmaz_ccd_expos 20) */
/* -- ----------- */
 sprintf (s,"vmaz_ccd_expos %s",op);

/* -- ----------- */
/* send the string s, containing the microcommand, to the main */
/* command parser, NULL means that we aren’t expecting any */
/* return value and AP_SIGNORM means that the command will be */
/* processed asynchronously without callbacks. */
/* -- ----------- */
 tngAPSendCommand (s,NULL,AP_SIGNORM);
 return (0);
 }

/* -- ----------- */
/* use the tngAPGetCommand to find out if the LOADP command */
/* was sent to the AP */
/* -- ----------- */
 if (!strcmp(tngAPGetCommand(acronym),"LOADP"))

The Galileo Ancillary Process Programmers Guide 17

 {

/* -- ----------- */
/* send a command to the user interface telling it to load and */
/* display the wstc_uif_vmaz interactive panel. Retmsg is the */
/* index of the panel and AP_SIGWAIT tells the AP to wait */
/* until the panel is fully loaded. */
/* -- ----------- */
 i = tngAPSendCommand ("loadpanel wstc_uif_vmaz",r etmsg,AP_SIGWAIT);

/* -- ----------- */
/* create a string s containing a command (for the UIF) that */
/* will disable the B widget group on the just opened panel. */
/* Note that we use the retmsg value to specify the panel. */
/* -- ----------- */
 sprintf (s,"disablegroup %s B",retmsg);

/* -- ----------- */
/* send the string s, containing the microcommand, to the main */
/* command parser, NULL means that we aren’t expecting any */
/* return value and AP_SIGNORM means that the command will be */
/* processed asynchronously without callbacks. */
/* -- ----------- */
 tngAPSendCommand (s,NULL,AP_SIGNORM);
 }
 }

main()
 {
/* -- ----------- */
/* initialize the AP WSTC_CCD and set its default U IF on WSTC. */
/* No custom socket descriptors and timeouts are re quired for */
/* this ancillary process. */
/* -- ----------- */
 tngAPInit("WSTC_CCD","WSTC_UIF",NULL,NULL);

/* -- ----------- */
/* register only the command handler to the cmd fun ction. All */
/* other event handlers (alarm, message, socket des criptors */
/* and timeout) are ignored. */
/* -- ----------- */
 tngAPRegisterHandlers (cmd,NULL,NULL,NULL,NULL);

/* -- ----------- */
/* enter the ancillary process main loop. */
/* -- ----------- */
 tngAPMainLoop();
 }

The Galileo Ancillary Process Programmers Guide 18

Appendix A: Definition tables

Definition table for TNG systems (.scf)
Nodenum long Main code assigned by Table Editor

Nodename char[40] Full name

Acronym char[24] Acronym; used by the system to compose the name of an

item in the Tdb – MANDATORY

Dbcode long Tdb internal code, assigned by software

Arpa_node char[16] Full Internet address – MANDATORY

Byte_sex long TRUE if the system supports the little endian byte ordering

Send_data long TRUE if the system sends scientific data besides telemetry

(e.g. a TLP connected to an instrument)

Tm_period long Base period for the telemetry; must be defined following the

kind of data sent, must be a multiple of one second (TLP
only)

Ncode long Number of code files to be sent to the system at boot-strap

(TLP only)

Type char[8] Acronym of the WS to which the TLP is connected; for the

WS it is their own acronym

Protection long Protection level, reserved for future expansion

Havepanel long TRUE if the system has a dedicated control panel

Firstqueue long Pointer to the command queue in the Tdb, assigned by the
software

Nscreens long Number of monitor screens connected to the system

Screendescr char[4,8] Screens descriptions

Definition table for TNG units (.ucf)
Unitnum long Main code, assigned by Table Editor

Unitname char[40] Description

Acronym char[24] Acronym; used by system to compose the name of Tdb

items; must be used together to the name of the system to

which the unit belongs to access to it - MANDATORY

Name char[40] Full pathname and possible options for the process

associated to the unit in the workstation; for workstations
only, must be empty for TLP

Dbcode long Tdb internal code, assigned by software

Protection long Protection level; reserved for future expansion

Havepanel long TRUE if the unit has a dedicated interactive panel

Ancillary long TRUE if the process defined in name is an ancillary process

Waitsignal long TRUE if the process defined in name must wait for a start

signal from INIT

Definition table for TNG parameters (.pcf)
Tag long Main code, assigned by Table Editor

Name char[24] Full name

Acronym char[6] Acronym; used by system to compose the complete acronym

The Galileo Ancillary Process Programmers Guide 19

of an element; is used together with the names of the
system and the unit to which the parameter belongs to

access the parameter itself in the Tdb - MANDATORY

Descr char[40] Description

Vmecode long TLP internal code – MANDATORY if the parameter is referred

to a TLP

Dbcode long Tdb internal code, assigned by the software

Type long Type; reserved for future expansion

Format char[4] Format, can assume the following values [f|d|s[nn]] - f

floating point, d integer, s char - nn gives the number of

elements if the parameter is an array

Access char[4] Access mode; can assume the following values:

RO=read-only, WR=write-only, RW=read-write

Decpoints long Number of decimal places; used for the display

Class long Class, assigned by the software; reserved for internal use

Vme_only long TRUE if the parameter is internal to the TLP; parameters with

this flag set to TRUE are reserved to the internal functioning

of the TLP and are not involved in the telemetry operations

Tm_flag long TRUE if the parameter must be sent with the telemetry;
parameters with this flag set to TRUE at boot-strap time are

considered stable components of telemetry operations and

cannot be removed from the telemetry; it is anyway possible

to add and remove other parameters to/from the telemetry
list at run-time

Convert long TRUE if the value of the parameter must be converted to

physical units

Coeff double[5] Polynomial coefficients for the conversion from engineering

units to physical units; The polynome used is of the type: ax4

+ bx3 + cx2 + dx + e

Def_value double Default value; used by WSS to assign a default value to

parameters of variable type; used by WS only

Check_limits long TRUE if the value of the parameter must be verified against

the limits of attention and alarm

Intr_low_limit long Lower limit in engineering units

Intr_high_limit long Upper limit in engineering units

Low_alarm_thr double Lower ALARM limit, in physical units

High_alarm_thr double Upper ALARM limit, in physical units

Low_attn_thr double Lower ATTENTION limit, in physical units

High_attn_thr double Upper ATTENTION limit, in physical units

Phy_unit char[12] Physical units

Tm_rate long Period for telemetry, computed in units of tm_period as

defined for the system to which the parameter belongs;

Definition table for TNG microcommands (.mccf)
Opcode long Main code, assigned by Table Editor

Name char[24] Full name

Vme char[24] Acronym of the destination system (TLP or WS) -

MANDATORY

Descr char[40] Description

The Galileo Ancillary Process Programmers Guide 20

Acronym char[24] Acronym - MANDATORY

Vmecode long Private TLP code, as defined in the destination system

(MANDATORY for TPLs)

Dbcode long Tdb internal code, assigned by software

Queue long TRUE if the destination queue is the immediate one

Waitflag long TRUE if the microcommand must be completed before

successive microcommands are executed

Task char[24] Acronym of the destination unit

Exec_verify Long TRUE if the microcommand submission for execution must be

reported through telemetry

Compl_verify Long TRUE if the microcommand execution must be reported

through telemetry

min_exec_time Long Minimum execution time

max_exec_time Long Maximum execution time (must be referred to the value of

tm_period)

Counter Long Number of operands (max. 10)

Convert Long TRUE if operands must be converted to engineering units

Coeff double[10,5] Table containing the polynomial conversion coefficients

Opdescr char[10,40] Operands description

Optype char[10,4] Operands type: f=float, d=long, sn=char[n]

Min_value double[10] Minimum value accepted for operands

Max_value double[10] Maximum value accepted for operands

Def_value double[10] Default value for operands

Verify_flag long TRUE if the microcommand execution must be verified
through a telemetry parameter

Tm char[24] Acronym of the parameter to be used for the microcommand

verification (current value versus preset value)

Tolerance long Tolerance in thousandths allowed in the verification

Slave_code long Slave CPU code on TLPs

Definition table for TNG messages (.msg)
Id long main code, assigned by Table Editor

Acronym char[24] message acronym – MANDATORY

Dbcode long Tdb internal code, assigned by software

Vmecode long TLP internal code

Typ long message type, allowed values are: 0=system, 1=info,
2=warning, 3=alarm

Descr char[80] message description

Txt char[80] message text, can contain any kind of data transferred with a

casting operation; sender and receiver tasks must obviously

agree on the content and meaning of the message

Definition table for TNG color palettes (.ctb)
Id long main code, assigned by Table Editor

Acronym char[24] acronym of the palette – MANDATORY

Dbcode long Tdb internal code, assigned by software

Descr char[80] palette description

The Galileo Ancillary Process Programmers Guide 21

Value char[16,40] table containing palette color names (max. 16)

Definition table for TNG interactive panels (.pdf)
Id long main code, assigned by Table Editor

Acronym char[24] panel acronym – MANDATORY

Dbcode long Tdb internal code, assigned by software

Screen long default screen (0-2), if the system has less screens, the

panel is opened on screen 0

Descr char[80] panel description

Fname char[80] name of the file containing the panel definition (see the

appropriate table)

Definition table for TNG interactive panel items (.pan)
id long main code, assigned by Graphic Editor

acronym char[24] item acronym – MANDATORY

group char[8] codes (up to 7) identifying the groups to which the item

belongs; group codes are single alphabetic characters, and

can be used for simultaneous operations on more items

type long item type, assigned by Graphic Editor; ranges between 1 and
15 (see Table 1)

color long item color, ranges between 0 and 23 (see Table 2)

style long item style; allowed values are: 0=solid, 1=dashed

thickness long item thickness; ranges between 0 and 7

x1 long x coordinate of item

y1 long y coordinate of item

x2 long width/radius

y2 long heigth/radius

font long font for labels, ranges between 0 and 9 (see Table 3)

mode long operating mode for STATUS type items; values range from 0

to 4 (see Table 4)

dbcode long Tdb internal code, assigned by software

sensible long TRUE if the item is sensible to operator's actions; can be
used at run-time to enable or disable items or groups of

items (see group)

threshold double threshold level at which items of type STATUS change

text char[40] text string to be shown in the items of type TEXT

pcf char[28] acronym of the Tdb parameter to be shown or to be used to

compute the trasformation of a dynamic item; the acronym

may end with an optional character string with the following

format: [/[S|E|C][nn]] /S means that the operator defined
value must be shown - /E means that the engineering value

must be shown - /C means that the current value must be

shown - no option means that the current value of element 0
must be shown - nn is the index of the element to be shown

in case of items of type array

mccf char[40] acronym, followed by operands, of the command to be

activated following an action on the item; applies to input

items only; operands can be acronyms of other Tdb
parameters, which will be substituted with their current value

The Galileo Ancillary Process Programmers Guide 22

stat char[2,40] name of two color elements, or two bitmaps, or two

character strings to be assigned to the two stati of an item of

type STATUS; threshold is the value at which the item
switches from one status to the other

dynamic long TRUE if the item is a dynamic one; a dynamic item can

undergo a transformation of its position, rotation angle or

color following the value assumed by the parameter specified
in pcf; the algorithm makes use of the minimum and

maximum values allowed for the parameter, as stored in Tdb,
and of the range defined below in this table to scale the

output values correctly; if range=0 (or ctname=0) then no
transformation takes place

xr long x coordinate variation range

yr long y coordinate variation range

angle double initial reference angle

angler double rotation angle variation range

xrot long x coordinate of rotation center

yrot long y coordinate of rotation center

ctname char[24] acronym of the color palette to be used for the

transformation

ctmin long first color element to be used in the color palette

ctmax long last color element to be used in the color palette

radiogroup long index of the group for mutually exclusive buttons; it is

equivalent to the concept of radiobutton

Table 1 : interactive panel graphical elements
N. Name I/O Text Dyn Grph Description

1 LINE O n y y line segment

2 RECTANGLE O n y y rectangle

3 BOX O n y y filled rectangle

4 CIRCLE O n y y circle

5 FILLCIRCLE O n y y filled circle

6 LABEL - y n n label

7 OUTPUT O y y n output text field

8 SLIDER I n n n slider with apply button

9 LEDBAR O n n n color led bar

10 BUTTON I n n n press button

11 STATUS O y n n two status output field (color, text or

bitmap)

12 ANALOG O n n n analogue gauge

13 SETPAR I y n n editable text field

14 CLOCK O n n n bar indicator with number (scalable)

15 CHECKBUTT I n n n check button (on/off)

I/O shows Input and Output items;
Text y means that the element contains text;
Dyn y means that the element is a dynamic one;

The Galileo Ancillary Process Programmers Guide 23

Grph y means that the element supports graphic transformations, besides color
transformations

Table 2 : character fonts
Code Font

0 tng_standard

1 tng_fixed

2 tng_fixed_bold

3 tng_fixed_large

4 tng_large

5 tng_large_bold

6 tng_large_italic

7 tng_large_extra

8 tng_symbol

9 tng_symbol_large

Table 3 : operating modes for elements of

type STATUS
Code Mode Description

0 lamp bicolor led, off=color[0], on=color[1]

1 text off=tex[0] on dark background, on=text[1] on green background

2 fault off=tex[0] on dark background, on=text[1] on red background

3 bitmap off=bitmap[0], on=bitmap[1]

References

1. Galileo Project: Workstation Software System
A. Balestra, P. Marcucci, F. Pasian, M. Pucillo, R. Smareglia, C. Vuerli
TNG Technical Report n. 9

2. The Galileo User Interface User's Guide
Paolo Marcucci, Mauro Pucillo
May 1994 - Pubblicazione Osservatorio Astronomico di Trieste n. 1454

3. The Galileo User Interface Programmer's Guide
Paolo Marcucci, Mauro Pucillo
May 1994 - Pubblicazione Osservatorio Astronomico di Trieste n. 1455 DRAFT

4. The Galileo Help System v1.0
Paolo Marcucci
November 1992 - Pubblicazione Osservatorio Astronomico di Trieste n. 1456

5. The Galileo Table Editor
Paolo Marcucci, Mauro Pucillo

The Galileo Ancillary Process Programmers Guide 24

September 1992 - Pubblicazione Osservatorio Astronomico di Trieste n. 1450

6. The Galileo Interactive Panel Editor
Paolo Marcucci, Mauro Pucillo
May 1994 - Pubblicazione Osservatorio Astronomico di Trieste n. 1451 DRAFT

7. DBlib - Disk I/O handling library
Paolo Marcucci
April 1992 - Pubblicazione Osservatorio Astronomico di Trieste n. 1440

